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Background

Lithium-ion batteries are power sources for electric vehicles (EVS).

State of charge (SOC) estimation of batteries is important for the
optimal energy control and residual range prediction of EVs.

SOC is the ratio between the remaining charge (Q,.m4in) and the
maximum capacity of a battery (Q,,.,)
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Equivalent Circuit Model of Batteries

« Equivalent circuit models have been used to model the relationship between
SOC and the measurable battery parameters: current I, and voltage U, [1-3].
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( Courtesy: Ref. [1])
where OCV is the open circuit OCV-SOC
voltage as a function of SOC,
which can be determined by
battery tests.
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State-Space Representation

 Process function:
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The model parameters will change with
loading conditions and battery aging.
Updating of the model parameters is

necessary to ensure the accurate SOC
estimation
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Problem Formulation

« Estimate the unknown parameters @ in

based on the information in the measured input-output responses
A A
Uy =[u, Uy [ Y 2]V Yy

using a maximum likelihood framework

N

6 =argmax p, (Yy )
0

Zargmax L, (Y, )
0
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Expectation Maximization (EM)

» Expectation step (E step): calculate the expected value of the log
likelihood function, with respect to the conditional distribution of X, given
Yy under the current estimate of the parameters g, [4]

Q(6,6,)=Ey [ Ly (X Vi) Yy = [ Ly (Xu: Yo )y, (X 1Yy )X

* Maximization step (M step): find the parameter that maximizes this
quantity:

0., =arg ryaxQ(H, 6,)
If not converged, update k->k+1 and return to step 2

It has been approved in Ref. [4] that
Lekﬂ (YN )_ I—ek (YN ) = Q(9k+1’ Hk ) B Q(‘gk 1 ek )
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Expectation Maximization (EM)

Q(0.6,)=E, [ L, (Xu.Ya ) 1Yy ] = [ Ly (X Ya )Py (X 1Yy )X

@
LH(XN’YN)zlogpe( )—|ng9(Y | Xy )+|ng9(xN)

N—

N
= log p, (X +Zlog Do (Xea %)+ D109 p, (Y, I %,)
t=1

Q(8.6,)=1,+1,+1,
where
1, = [log p, (x,)10g Py, (%, 1Yy )dx,

N-—

ZHIOQ Do (Xt 1% )Pg, (Xeis X 1Yy XX,

t=1

=z

;jlog P (Y 1% )Py, (% Yy ),

The particle smoother provides approximations for I, and I5:

Pa, (% Yy) :i’\lzla)tilNg(Xt _Xfl)
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Expectation Maximization (EM)

N-1
- Z.”IOQ Py (X1 | Xt)pﬁk (% X [y Jaxdx,

t=1

ﬂ using Bayesian and Markov property

pek (Xt+1’xt |YN ) - pek (Xt | Xt+1’YN ) pek (Xt+1 |YN)
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_ ek(xtl X'[) Hk(x'[ )pak (Xt+1|YN)
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pek (Xt+1 |YN )

l Jr pek(xt+1lxt)p9 (thYt)dXt \
State equation /
Particle Smoother
Particle filter Py, (X 1Yy) Zm@ (%= %)

D, (% 1Y,) Zco5(>q X)
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Expectation Maximization (EM)

 Particle smoothing approximations

Q(8.6,)=1+1,+1,
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Particle EM Algorithm [4]

1. Setk=0and initialize g,

2. Expectation (E) Step:
a) Run particle filter and particle smoother
b) Calculate Q,, (6,6, )=1,+1,+1,

3. Maximization (M) Step:
Compute: 6, , =argmaxQ,, (0,6,)
0

4. Check the non-termination condition Q(6,.,.6,)—Q(6,.6,) > ¢
If satisfied updatek — k +1 and return to step 2, otherwise
terminate.
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Particle Filter Algorithm [4-5]

1. Initialize particles, {x;}", ~ P,(x,) and sett= 1.

2.  Predict the particles by drawing M 1.i.d samples according to
%~ P (% 1%,), =1, M

3.  Compute the importance weights {wt‘}M

i=1

. ~i P@(ytl;(l) .

W':W(Xt)z - —,i=1..,M
~]

Zpe(ytlxt)

j=1

4. Foreachj=1,..,Mdraw anew particle %' with replacement (resample)
according to

P(X) =) =W, i=1..,M

5. Ift<Nincrement t - t+1and return to step 2, otherwise terminate.
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Particle Smoother Algorithm [4-6]

1. Runthe particle filter and store the predicted particles {x'}". and their
weights {w{}, fort=1,....N.

2. Initialize the smoothed weights to be the terminal filtered weights {Wt' }at
timet=N.

Wy =Wy, 1=1..,M
and sett = N-1.

M

3. Compute the smoothed weights {W‘ }

moc " " using the filtered weights (w |
and particles {x., x...}", via 1

~K | ~i

- M P, (Xt | X Mo ki

wh = >y, 2D here v = 3 wlp, (i | X)
k=1 t k=1

4, Updatet —t—1. If t >0 return to step 3, otherwise terminate.
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Implementation

e Hardware

— Dell Laptop with a 2.67G Hz Intel Core 17 CPU and 4 GB
of RAM

e Software
— Matlab
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Validation

« Simulated data will be used to validate each component: the particle filter,
particle smoother and the particle EM.

« Simulated data will be generated with the assumed exact values for the
model parameters and states.

» Validation of particle filter and smoother
— Model parameters are assumed to be known

— State filtering and smoothing results will be compared with the true state values
to verify the algorithm.

« Validation of particle EM

— Model parameters and states are assumed be unknown
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Project Schedule and Milestones

* Project proposal: October 5 2012

 Algorithm Implementation:
- Particle filter and smoother: December 1 2012
- The full algorithm (particle EM): February 1 2012

 Validation: March 15 2012
e Testing: April 15 2012
e Final Report: May 1 2012
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Deliverables

e Codes
o Simulated data sets
e Presentations and reports
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